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J. mys. A Math. Gen. 25 (1992) 4443-4457. Printed in the UK 

Lagrangian presymplectic constraint analysis of mechanical 
models of field theories coupled to external fields 

w cox 
Department of Computer Science and Applied Mathematics, Aston University, Aston 
Triangle, Birmingham E4 7ET. UK 

Abstract. The Lecanda-Romln-Roy geometric constraint algorithm far presympleclic 
Lagrangian systems is applied to a mechanical model of singular field theories coupled to 
time independent external fields. The simple, yet intiinsic structure of the algorithm allows 
the influence of the external field lo be traced through the constraint analysis, showing 

straints arising from the stability of the fint generation compatibility constraints. Using a 
coordinate independent geometric algorithm provides a more systematic tool far investigat- 
ing singular field theories than the usual ad hoe manipulation ofthe field equations; where 
the essential stmcture is often obscured b y  the details of the rewesentation of the model 
and the complexity of the algebra. 

clearly where pa!ho!ngles a?iir+namr!y in !he sccnnrl pnlration non-dynamics! m n -  

1. Introduction 

In recent years there has been steady progress towards the geometric formulation of 
the theory of dynamical systems with constraints. Since the seminal work of Gotay et 
nl [ l ]  on the geometrization of the classic Dirac-Bergmann constraint algorithm for 
singu!a_r Hamiltonian rgrtemc and_ its sgbseqgent paflia! extension to Lagranpian 
systems [2,3], successive authors have refined the process of geometrizing both the 
constraint algorithm and the connection between the Lagrangian and Hamiltonian 
formalism for constrained systems with a finite number of degrees of freedom. An 
excellent modem review of the current situation has been given by Carifiena [4]. 

The extension of this geometrization programme to infinite dimensional systems 
such as field theories is less advanced, particularly in the sense of practical utility. 
Gotay and Nester considered the cases of the free Maxwell and Proca fields [ l ,  51 
using functional derivatives, and much work has appeared on the theoretical aspects 
of geometrization of infinite dimensional systems [6-91. One such development has 
been the use of the multisymplectic formalism as a basis for the geometrization of field 
theories [lo, 111 and of course, the fibre bundle structure of Yang-Mills gauge field 
theories is well understood. However, these approaches are still some way off a 
geometrical understanding of the structure and properties of classical field theories 
and their various pathologies such as acausality and indefiniteness of quantization of 
coupled higher spin theories [12,13]. The nature and relation of these pathologies to 
the structure of the field theory has not been satisfactorily clarified. Although it is 
known, for example, that the Velo-Zwanzinger and Johnson-Sudarshan problems have 
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a common origin in the constraint analysis [14,16], a thorough understanding of the 
situation has been hampered by the lack of a systematic, intrinsic, coordinate indepen- 
dent constraint algorithm through which to trace the advent of the pathologies. Few 
general pattems emerge from the complicated calculations which are necessary in such 
theories. 

In [14,15] Capri and Kobayashi avoid much of the drudgery of high spin analysis 
by using a mechanical analogue of a typical higher spin theory, allowing a constraint 
treatment as for a system with a finite number of degrees of freedom. This allows 
investigation of the general structure of a high spin theory and its couplings, while 
dispensing with the trappings and complexities of field theory. This analogue lends 
itself readily to a geometrical formulation. In [14] the approach is by the Dirac- 
Bergmann Hamiltonian constraint analysis, whereas [15] uses the more usual direct 
Lagrangian approach of field theory. While the Dirac-Bergmann Hamiltonian con- 
straint anaiysis was geometrized some time ago [ij,  a geometric Fonnuiaiion of a 
presymplectic, completely Lagrangian constraint analysis has only recently been perfec- 
ted by Lecanda and RomPn-Roy [17]. In this paper we apply the Lecanda-Romin-Roy 
geometric algorithm to the mechanical model of Capri-Kobayashi, identifying the 
stage at which pathologies arise. The advantage of this approach is that it sets such 
difficulties in a general geometric framework of a systematic constraint analysis. In 
LCLIIIS U, LLlC ~C~~,,"~-nunr~,r-nuy dLgu,rnrrn L11S llrrsrrlurrrry bUIIUILIULI U L  b a p -  

Kobayashi arises in the stability of the compatibility conditions generating the first 
generation dynamical constraints. This stability generates a second generation of 
dynamical constraints, the stability of which determines the vector field on the final 
constraint submanifold uniquely, only if the invertibility condition is satisfied. The 
causality of the flow of this vector field is then dependent on the invertibility conditions 
and furthermore, this condition dictates the definiteness of the quantization procedure 
as performed on the constraint submanifold. Thus, in general, such pathologies as 
acausality and quantization indefiniteness are pre-empted by external field induced 
disruptions in the constraint analysis [ 161. 

In section 2 we describe the Lecanda-Romin-Roy formalism and this is applied 
to the Capri-Kobayashi model in section 3. The results are discussed in section 4. 

*--- '̂- .l.̂ ,^^^^-I^ D..-^*^ D.... ..,-..A.L- r L ^  :...."d:L:,:*.. --..A:.:-- ^ E  P,.-A 

2. A presymplectic constraint algorithm for Lagrangian systems 

The Lecanda-RomPn-Roy (LR) algorithm analyses singular Lagrangian systems with 
a finite number of degrees of freedom, to determine a submanifold of the velocity 

equations of motion and also a second order differential equation. All stages of the 
algorithm reside in the Lagrangian domain, with no excursion into the Hamiltonian 
form a 1 ism . 

Consider a system with a configuration space Q, velocity phase space TQ, and with 
an almost-regular [2] Lagrangian L. We introduce the vertical endomorphism I (called 
the almost tangent structure by Gotay-Nester [2,3] and often denoted by S, as for 
example in [4, IS]) as a pointwise map: 

phase space, with a iangeni vecioi fieid .which is a s o ~ u ~ o f i  ofiiie Lagienpiaii 

I : T( TQ) + V( TQ) 

where V (  TQ) is the set of vertical vectors on TQ, given in local coordinates, (4. U) E TQ 
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J 

Ju' 
J=-0 x dq' 

(for intrinsic definition see [4]). 

Lagrangian presymplectic 2-form 

In local coordinates (4, U): 

Defining the Lagrangian 1-form 0 = dL0 J on TQ we can then construct the usual 

w = -dB 

J'L 
dq'Adq'+z-dq'AduJ. 

J'L 
w=x-  

;,j JqJaU' i , j  Ju'au' 

In terms of local coordinate system (qi. uJ, w may be regarded as a transformation 
defined by contraction 6: S(TQ)+A' (TQ) ,  represented by a matrix [4] 

A -W 
;=[w 0 1  (2.4) 

where 
J ~ L  a ' ~  A.. E--. 

'I Jq'Ju' Ju'Jq' 

J'L WG=-,  
Ju'Ju' 

In the usual manner we define the energy, E, by 
E = A ( L )  - L 

where A is the Liouville vector field in TQ which generates dilations along the fibres: 

for fe C"( TQ). In local coordinates (q ,  U): 

For a physical system we require the Lagrange equations resulting from the action 
principle for E to yield second-order differential equations (SOOE) of motion. Geometri- 
cally, a SODE is a vector field X whose integral curves are canonical lifts to TQ of 
curves on Q. In local coordinates the general form of such a vector field is 

a J 

Jq  J U, 
x = u',+f'(q, U) - 

yielding integral curves 
dq' 
df 
dui 
df 

_ =  

-=f'(q, U). 
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Using the coordinate form for J and A the geometrical condition for X to be SODE is 
seen to be JX =A. 

The LR algorithm analyses the results of the action principle for singular Lagrangians 
by searching for a vector field X E 9( TQ) (the set of vector fields on TQ) and a 
submanifold S c  TQ such that 

(i) The Lagrange equations 

iuo = d E  (2.5) 
are satisfied on restriction to S, where E is the energy. 

(ii) X is a second-order differential equation (SODE) on S. 
(iii) X is tangent to S. 

We will take for granted all the requirements of good behaviour of those submanifolds 
of TQ with which we have to deal, except in those circumstances in which pathologies 
due to external field values may disrupt this behaviour. For example, a basic assumption 
of the LR algorithm is that dim(ker w )  is constant, but in general this will depend on 
external field values. 

The first stage in the algorithm is to derive from (2.5) the first generation constraints, 
which are of two types-dynamical, coming from the compatibility conditions of (2.5) 
and non-dynamical, arising from the SODE conditions on the solutions of (2.5). This 
yields a submanifold SI c TQ and a family of vector fields: 

(2.6) {Xo+ Yo+ V: V E  V(ker U ) }  

such that 

(i(x,+yg+y~w--dE)ls,=O (2.7) 

and 

Xo+ Yo+ Vare SODE (2.8) 

where V(ker w )  denotes the vertical part of ker w :  

V(ker w )  = ker w n V( TQ). 

In (2.6), X, is a particular solution of the Lagrangian equations, while Yo is an element 
of kerw chosen to ensure that Xo+ Yo is SODE on SI. V on the other hand is an 
arbitrary element of V(ker U ) .  

The submanifold S, is defined by 

SI = { X E  TQ; (ir(iow -dE))(x) = O  V Z E  A} 

A = { Z  E F( TQ); JZ E V(ker w ) }  

(2.9) 

(2.10) 

for any SODE 0, where 

is essentially the inverse image of V(ker w )  under the vertical endomorphism J. 
In terms of the matrix representation (2.4) of w the general form of Z E A is [41 

J J 

J q  Ju 
Z = c i y +  y t y  (2.11) 

where 

wc=o 
y =arbitrary. 
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The tWO types of first generation constraints referred to above, which specify the 
submanifold S, , are defined by: 

Dynamical constraints 

L 1 =  ir d E  = O  ZE ker w. (2.12) 

Non-dynamical constraints 

1 1 1  = i&W = 0 (2.13) 

where 

Z E A  Zekerw YE 7( TQ) with X,+ Y a SODE. 

In practical terms the twoJypes of constraint differ in their h-projectibility. The 
dynamical constraints are FL-projectable to corresponding constraints in the Hamil- 
tonian formalism. Their stability (see below) may lead to further generations of both 
dynamical and non-dynamical constraints. The non-dynamical constraints are not 
FL-projectable and their stability can lead only to elimination of degrees of freedom 
in the vector field solution, rather than to further constraints. 

In general the family of vector fields (2.6) is not tangent to the submanifold S, and 
will therefore evolve flows off this submanifold (i.e. the constraints are not perserved 
in time). The requirement of such tangency yields further stability conditions, which 
define a new submanifold S,c S,. These arise from ensuring that the first generation 
cmstraints c', 11' are stable under the vector fields in (2.6). As a consequence of their 
FL-projectibility this yields possible new second generation constraints from the 
dynamical first generation constraints, 5': 

(WO+ YdiZ dE))(x) = O  VZ E ker w (2.14) 

defining a new submanifold S,c SI. The non-dynamical first generation constraints 
11' on the other hand yield non-trivial equations 

((XO+ YO)W(Z, Y))(X)+(VW(Z, Y ) ) ( x ) = O  
(2.15) 

which may determine some or all of the otherwise arbitrary V E  V(ker w ) ,  rather than 
producing further constriants. The remaining undetermined V satisfy 

Vw(Z, Y) =o V Z E A .  (2.16) 

So we may now write the vector field solution on the new submanifold S2 defined by 
(2.14) in the form X,+ Yo+ V,+ V' where X,+ Yo+ Vo is tangent to S, on all points 
of S,, V, is a particular solution of (2.15) and V'E V(ker w )  is an arbitrary solution 
of (2.16) which is tangent to S, on all points of S2. S2 is the submanifold of second 
generation constraints, defined by the constraint functions 

V Z E A  Z e k e r w  Y E S t ( m )  X,+ Y SODE 

WO+ Y0)(b d E )  for Z E ker w. (2.17) 

Now, of course, we must ensure that the new solutions Xo+ Yo+ V,+ V' are tangent 
to S2. For this purpose the second generation constraints must be again split into 
dynamical (i.e. FL-projectable) and non-dynamical (non FL-projectable). It is shown 
in [I71 that the second generation dynamical constraints are those defined by 

L2=XO(iz d E )  ZEkerw (2.18) 
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such that 

Y(iz dE)ls,=O V Y E ker o 

while the non-dynamical constraints are given by 

q 2 = ( X o +  Yo)izdE Z E k e r o  (2.19) 

such that 

Yoiz dEls, # 0. 

Having thus split the second generation constraints we can now investigate stability 
exactly as for the first generation constraints. Demanding stability of the t2 under 
Xo+ Yo+ Vo+ V yields possibly new third generation constraints, defining a new 
submanifold S,,  while stability of the q2  can only yield further determination of the 
remaining arbitrary V .  

The third generation dynamical constraints arising from the stability conditions for 
the dynamical second generation constraints 6’ may be written 

~3-(X0+Y0)(X0( izdE))=0 Z c k e r o  

where 

Yoiz d E l ,  = O  
and these define S3 c S2 : 

S3={xc S I ;  ((X,+ Yo)(Xo(iz dE)))(x) = O V Z E  ker o, Yoiz dEl,=O) 

which is the third generation constraint submanifold. 

(Xo+ Yo)iz dE, Z E ker o, Yoiz dElsl # 0 yields new equations for the V‘: 
The stability condition for the non-dynamical second generation constraints q 2  = 

V’(Xo+ Yo)iz dE  = -(X,+ Yo+ Vo)(Xo+ Yo)iz d E  

thereby reducing further any gauge degrees of freedom. 
The above process may be iterated as necessary, concluding in (for a physically 

sensible system) a non-trivial final constraint submanifold S, on which there exist 
non-trivial SODE solutions, 0, tangent to S,, which have the general form Xo+ Yo+ V, + 
V where V E  V(ker o) and V, is completely determined while, V,  also tangent to S,, 
represents the remaining gauge freedom. At this point the presymplectic Lagrangian 
constraint algorithm terminates. See 1171 for further details and a general characteriz- 
ation of the ith iteration in terms of vector fields T E  9(Si)’, which we will not be 
using here. 

3. The mechanical constraint model 

We consider a Lagrangian of the form 

L =  ~ ~ m . b ~ b + ~ ~ C . b + b - + ~ ~ ~ b ~ b -  +$rsZb+b (3.1) 

where the 48, a, b = 1,2,, , . , N are regarded as generalized coordinates in a 
2N-dimensional configuration space Q. We will adopt the convenient physicists practice 
of regarding &, 4: as independent coordinates, which also provides a useful check 
on the final outcome of calculations. Many bosonic relativistic field theories, including 
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gauge and high spin theories, may be cast in the form of (3.1) by a ‘3 + 1 decomposition’ 
wherein spatial derivatives and extemal fields are tucked away in the cab and Tab. Here 
however, we will follow Capri and Kobayashi [14,15] and regard (3.1) simply as a 
mechanical analogue of such theories, with similar constraint structure. In order to 
apply the LR formalism the coefficients mob, cab, ZGb, rmb are assumed to he time 
independent. Reality of the Lagrangian demands that mab, re, are Hermitian, while 
the cab satisfy 

Z:b = -ch. 

It is possible to choose Cab = cab of course, then cab would be anti-Hemitian, but in 
practice (as for example in the Proca theory coupled to an electromagnetic field, [15]) 
the most usual covariant form of the field theory Lagrangian may not reduce directly 
to this form, so it is convenient to retain the generality of (3.1). 

Being Hermitian mab is diagonalizable and we will therefore take it to be so and 
work from a Lagrangian of the form 

L =  m . ~ : s . b ~ b + ~ ~ c . b $ b - $ ~ C ~ b ~ b - $ ? r . b $ b  (3.2) 
to which we now apply the formalism of section 2. 

If all ma # 0 then (3.2) yields no constraints, so we assume that 

m. = O  
m.#O 

a = i, j, rC, . . . = 1,2,. . . , ( N - r )  

n = a , p , y  ,... = ( N - r + l )  ,..., N 
(3.3) 

and rewrite the Lagrangian consistent with this split as 

L = X  m ~ ~ $ s ~ , ~ , + ~ T c u + , + ~ ~ c j ~ $ = t ~ ~ c ~ i + i + ~ ~ c ~ , $ ~  
01 

- + T C u ~ j - $ ~ ~ i ~ ~ ~ - + ~ C ~ j ~ ~ - $ $ C ~ , ~ ,  ++?rmb$b. (3.4) 
The Lagrangian presymplectic 2-form o is found to be, from (2.3): 

o = m,S,, d+2 ~ d &  + m,6,, d$m ~ d d , * +  dji d+T A dq5j t dei d 4 5  A d+i 

+(-d;,)d$,Ad$T+d,a d$,*Ad+, (3.5) 
where 

dab = cab + Cab, 

Let 

(cc denotes corresponding conjugate terms such as kFala+)) be a typical element of 
ker o. Then K satisfies 

diik: -k d.(kz = 0 

- duk, + di,k, = 0 

- m,K$+ d,kf t d,,k,* = 0 

- m,K, - dmik, - d,,k, = 0 

m,kz = 0 

m,k, =O. 
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(It is hoped the occasional abeyance of the summation convention will be clear from 
the context.) 

The solution of (3.6) is 
k, = k$= 0 
diikT = 0 

m,K 2 = d,,kf 
m,K, = -d,,k, 
K i ,  K :  arbitrary. 

dim(ker o) = 4( N - r )  - 2 rank( d,). 

d..& = 0 
'I 

The nature of ker w is clearly dependent on the sub-matrix d,. Specifically 

Since d,  may contain parameters in the form of external fields it may he that dim(ker w )  
varies with the external field. This would imply a constraint structure dependent on 
the external field and so we will exclude this possibility by insisting that rank(d,) is 
constant, independent of the value of the external field. 

There are then two possibilities with distinct constraint structures rank(d,) = N - r 
and rank( d,)  = r, < N - r. 
rank(d,) = N -  r 

In this case d,  is non-singular and the solution to (3.6) yields 
k , = k : = O  

k, = kz = 0 
K .  = K z  = 0 
K, ,  KT arbitrary. 

Thus in the case Id,[ # 0 a basis for ker w is 

From (2.11) we find that a local basis for U is 

There are no compatibility constraints, as ir d E  is identically zero for Z 
let 

a a a a 
a+, a+= a+l a+* 

X = a,-+ a,  -+ A, -+ A, --+ CC 

k 

(3.7) 

(3.8) 

J. NOW 

(3.9) 

be a typical vector field solution of the Lagrange equations (2.5). Then the components 
of X satisfy the equations 

(3.10) 

(3.11) 

(3.12) 

a: = 4: 

dilaT + d,,az = r&T + rml+z 
- di,ai - d,a, = r& + ria+= 
-m,A*+d,as+ds,aa*=r,,+:+rs,~B 
- m,A, - &,aj - &,as = rm1+, + ros4O. 

a, = 
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These equations determine a,, a2 and thence ai, a?, since Idgl#O, in terms of the 
velocities &, $2 and the coordinates 4.,, 4:. Then (3.12) determines A., A: but Ai,  
A )  remain undetermined. 

Now applying the SODE condition (2.9), using A given by (3.8) yields the first 
generation non-dynamical constraints 

,f' = 4i$T+ dmi$2- rajq52 = 0 

7; = d9dj + dim& + r j&,  = 0 

which, by comparison with (3.11) guarantee that 
a. = 4. = 4: 

I ,  

and hence that (3.9) is SODE: 

(3.13) 

. a  . a a a 
' a h  a& a& 

X = D = 4.-+ -+Ai-+ A, -+CC 

in which the A,, A2 are determined from the Lagrange equations (3.12) and the Ai ,  
A )  remain arbitrary. 

Equation (3.13) defines a constraint submanifold S, on which, in the notation of (2.6) 

YO'O. 

Stability of the SODE conditions under D yield 

D ( 7 ) ' ) -  djtA,?+d,,A,*-r,,~$$=O 

D( 7 f )  f d9Aj + d,,A, - r,.,& = 0 
(3.14) 

which determine the Ai,  AT, on substituting for A,, A: from (3.12). The result is 

and the final vector field solution on S, is 

X yields directly the equation of motion for each of the coordinates 
for the independent degrees of freedom 4- we obtain 

4:. Specifically 

(3.17) m& = (dmidj0dj' - d-p )do + (qa.dj'dai - re. )h 
on S,. 
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Provided the coefficients d and r are well behaved functions of the external field 
and that rank(d,)= N - r  for all values of the field then the constraint submanifold 
SI is a continuously deformable submanifold of TQ and the flow of X on S, is similarly 
a well behaved function of the extemal field-no such problems as acausality arise. 

rank(d,)=r, < N - r  

dg is anti-Hermitian and may therefore he diagonalized-and without affecting the 
&, $ 2  coordinates. Therefore, introduce matrix S satisfying 

S,'d$kl = d;& (3.18) 

where 

d, = 0 

d; f 0 
i = I, J, K ,  . . . , = 1,. . . , ( N  - r -  r I )  

i = A , B , C  ,..., = ( N - r - r l + l )  ,... ( N - r )  

and define new quantities 

*. ' = S?&. ' I ,  * T  = q5TSji *= = A *: = @: 
c, = S;,'Ch,S, 

e,, = SZ'Z. 'I I" 

c, = S&S, 

p =I .s.. 11 

c. 10. =Sri,. 'I J' e,; = c,sj; = c-0 (3.19) 
- - - 

cas = 

R, = S i 1  rk& R,  = SZ'r. 1J J* Rml = raj$( R,, = r+. 
In these variables the Lagrangian (3.4) retains its form 

L=x m,$$8.,tjs + $fc,h + + $:cmi*i + $2c+*p - $?Cg$j 
(I 

- $? cia$= - $2 c=i$< - @:CO& - @$&& (3.20) 

but is now adapted to the diagonalization of d,. We will assume that this diagonalization 
procedure is a well behaved function of the extemal field. 

With 

Dab = cab + c a b  (3.21) 

the equations determining ker w, corresponding to (3.6) are 

Djik? + Daik2 = 0 

- D,kj + D;,k, = 0 

-m,K:+D,,k:+D,,k$=O 

- m.K, - D,;k, - D,,k, = 0 

m,k$=O 

make = O .  

Using the diagonal form of D, to solve these equations yields, for the most general 
element of ker w :  

(3.22) 
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where k,, k:, K,, KT are all arbitrary. So in this case a basis for ker w is 

The general form of 1 is unaltered, being independent of dg,  but it is convenient to 
cboose a basis adapted to ker w, so we take 

with Z,, Z :  as for kef 0. 

in the Idg/  # O  case. These are iz, dE, i L t  d E  and yield 
In the present case the Z,, Zf give first generation compatibility constraints, absent 

@ = - D ~ , $ : + R . & = O  

r: = -Die$= + Ria$, = O  
(3.25) define a submanifold P, c TQ. 

I =  1,2, .  . . , ( N - r - r J  

I = 1,2, . . . , ( N - r  - rl)  

The Lagrangian equations for the general vector field 

a d d d d d 
X = a, --- f aA --+ a. -t A, -t AA - f A, - f cc 

a$, a$A a+- a$, wA a$= 
on P, give 

a, = 

- Dimam = RI& 

V u  
a* = $2 

V I  
= R,& 

V A  
- dAaA - DA,a, = R A ~ $ ~  
&gX+&g* = Ra& 

- m,A, - D , p ,  - D,AaA- Ompa, = Rm&a 
V a  

-m,A:tDl~a:-+D,,a:+Dg.ap*=R.o$* 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.27) determine a,, a:, (3.28) repeat the compatibility constraints (3.25). Equations 
(3.29) then determine aA, a:. The a,, a f  remain undetermined, as do the A,, A: while 
the A,, A: are determined by (3.30) once a,, of are known. 

The only elements of 1 which are not contained in ker w are ZA, Z: and these 
yield the SODE conditions 

7z1= dA$:+ DmA$2- R.,$,.* = 0 

9; e dA$A f DA& + RA.&= = 0 
(3.31) 

following (2.9). These define a new constraint submanifold, SI. Comparing these with 
(3.29) gives 

aA = $A 

a: = $2. 
(3.32) 
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The a,, a f  remain arbitrary, but may be chosen to ensure that X of (3.36) is SODE. 

We write the general X, determined from (3.27)-(3.32) in the form: 

x = x, + Y + v 
where 

is a particular SODE solution of the Lagrange equations, due to (3.31), 

is an element of ker w,  and 

J J 

JJl; J*T '  
V =  A,-+A: - 

We make X SODE by choosing the particular Y = Yo€ ker o 

Then 

D = X , +  Yo+ V 

is SODE on S, as required. 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

In D the A;, AT remain undetermined. This is remedied by the stability conditions. 
Stability of the non-dynamical SODE conditions (3.31) give the A,, AT, immediately: 

from D(v5') = 0 and 

from D(qk)=O, where the aB, a: are to be substituted from (3.29). 
The stability of the compatibility constraints (3.25) yields a second generation of 

non-dynamical constraints (for example, (: yields (Xu+ Yo)( ( : )  = 0 with Yu(l;)  # O-cf 
(2.19)): 

(3.40) 
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where 

These constraints, defining a new submanifold, S,,  contain $,, 4: and so their stability 
yields equations for A,, AT : 

Up to this point, provided the usual assumptions that dim(ker o) =constant and the 
good behaviour of the diagonalization process (3.18), no problems will have been 
occasioned by the value of the external field-the constraint analysis so far is unaffected 
by the external field (except that the submanifolds P, , S,, S, and the flows on them 
will be continuously deformed under changes in the external field). 

At this stage in the analysis however, we see that A,, AT will only be uniquely 
determined from (3.41) provided 01, is non-singular. Even if it is non-singular in the 
free field theom-i.e. coefficients d, r independent of the external field-it will, in 
general, still be a function of the external field and may therefore be singular for snme 
values. If 0,, becomes singular then some of the d,,  $T will be undetermined by (3.40) 
and so some of the A,, AT will be undetermined and a third generation of constraints 
is foreshadowed. Since we cannot allow the constraint structure to be dependent on 
the external field (otherwise for example, the system may lose degrees of freedom for 
certain values of the external field), we must insist that rank( 0,) =constant, indepen- 
dent of the external field. 

If lO,,l = O  then we must continue the constraint algorithm described in section 2, 
leading to higher generation of constraints. In principle, nothing new is entailed. 

If 10,J1#O the analysis is now complete, the final vector field solution is uniquely 
defined on the final constraint submanifold S, by the coefficients a., a:,  A., A:, with 
the A,, AT given by (3.41). The 'true equations of motion' for the coordinates $12 
are then given by 

= A ,  
*$ =A.* (3.42) 

The i dependent components on the submanifold S, are $Ia, $2 and their equations 
of motion are, for example: J. 

$Ia = A .  
1 

= -- (a,D,,+aAD.A+D,& - R m . d a ) .  (3.43) 
m, 

Substituting for aA from (3.29) and a, = 4, from (3.41) yields 

$I, =- D,IO~'O,ADA,+D,,O~'O,P - D,aDaa 
d A  m, 

again provided I ON I # 0. 
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Equation (3.44) is a somewhat simpler form than the corresponding time indepen- 
dent case of [14] and reflects the relative simplicity of the LR constraint algorithm. We 
will obtain a similar equation to (3.44) for the conjugate variable $2. 

4. Conclusions 

We have performed the constraint analysis for the general mechanical analogue (3.1) 
of field theories with constraints, allowing for the presence of time independent external 
fields in the Lagrangian. The entirely Lagrangian presymplectic geometric algorithm 
of Lecanda and Romin-Roy has been used, to set the constraint analysis and its 
response to the external field in an intrinsic geometric context. Not only does the 
algorithm provide a geometric, coordinate independent formulation, but in its geometric 
view of the compatibility and SODE constraints and their stability, it sets the usually 
rather ad hoc constraint analysis of field theories in a systematic framework, wherein 
the influence of the external field becomes transparent. 

Thus, provided the assumption that dim(ker o) is constant is upheld for all external 
field values, the main determinant of consistency at the first stage of the algorithm 
rests on dim(ker U ) .  

If rank(d,) = N- r then the bases for ker o and A are independent of the external 
field. There are no compatibility constraints and the stability of the first generation 
non-dynamical constraints (3.13) which occur guarantees complete determination of 
the vector field solution of the Lagrange equation. The consistency of this vector field 
solution is unaffected by the external field. 

If rank( di,) < N - r, then we obtain second generation constraints, the analysis of 
which is facilitated by diagonalizing du and we assume that this process is well behaved 
as a function of the external fields (this is more than a convenience-notwithstanding 
diagonalization of d, we would still need to insist that its spectra and eigenspaces 
behave themselves as functions of the external fields). The null eigenspace of d, now 
results in compatibility constraints, (3.25), while SODE conditions (3.31) emerge from 
the non-singular part. The SODE vector field solutions on the resulting constraint 
submanifold S, (3.38) contains arbitrary vectors V in the vertical sector corresponding 
to dV, (3.36). Stability of non-dynamical SODE conditions (3.31) determine those vectors 
in the non-singular part of d,, while stability of the compatibility constraints (3.25) 
yields further non-dynamical constraints (3.40) containing the velocities $hl, 4: corres- 
ponding to the null sector of d,. Thus far the external field has no influence on the 
consistency of the algorithm. However, at this stage of the second generation non- 
dynamical constraints obtained from the stability of the first generation compatibility 
constraints, we meet a constraint typified by (3.40) 

oIJ*I +. . .=o  
with 

Stability of this constraint then yields an equation of the form (3.41) 
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which only determines the final vectors in the solution of the Lagrange equations if 
101,1 #O.  If 10r,l = O  we move into a third generation of constraints. At this stage it is 
imperative for consistency that the external field should not affect the outcome. Thus, 
if 101,1 # 0 in the ‘free-field theory’ then this must be preserved for all values of the 
extemal field. Assuming this is so, (3.41) will allow complete determination of the 
vector field solution of the Lagrange equations and hence the equations of motion 
(3.42). The important point is that the singularity of 0, already prejudices the constraint 
analysis at the level of the second generation constraints and pre-empts any such 
problems as acausality and quantization in the final ‘true equations of motion’. This 
gives a general confirmation of a similar situation discussed in [ 161 for the case of the 
Rarita-Schwinger field. 
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